$[Pt(oaoH)_2]$  (Endres, 1980). No bending of the molecules is observed in this case, as there is only one H bridge between each pair of molecules. H bridges *via* water molecules, leading to a ladder-like structure, are found in the regular stacks of  $M(oaoH)_2$ .2H<sub>2</sub>O, M = Ni or Pd (Endres, 1982*a*).

As in some other complexes it is not possible to discriminate between 'M-M' and 'M-L' forms. The arrangement between adjacent pairs of H-bonded dimers, with the long metal-metal distance, is reminiscent of the M-L type of stacking, while the geometry within a dimer is different from the usual M-M pattern, despite the short Pt-Pt distance. There is no twist of adjacent complexes relative to each other and the molecules are nearly eclipsed. The Pt-Pt vector makes an angle of  $9.9(5)^{\circ}$  with respect to the normal of the plane through Pt and the four coordinated N atoms. A perpendicular projection of the two molecules of a dimer (Fig. 3, deposited) reveals that it is not an attractive Pt-Pt interaction which leads to the observed arrangement, but the link between the H-bridged O(1)and O(3) atoms of adjacent complexes. The other atoms tend to avoid close intermolecular interactions as far as possible, without losing the bonding  $O(1) \cdots O(3)$ contacts.

Further H bridges link the stacks in the other two dimensions (Fig. 4). In the y direction these bridges involve amino and oxime groups, in the z direction the bridging occurs via O(6) water molecule.

From a chemical point of view it is interesting to note that the treatment with iodine-containing HI solution does not lead to oxidation of the complex.

This work has been supported by the Stiftung Volkswagenwerk and by the Fonds der Chemischen Industrie. A gift of Pt salt from DEGUSSA, Hanau, is also gratefully acknowledged.

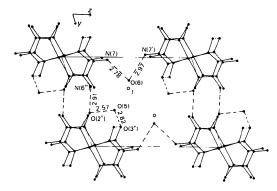



Fig. 4. Parallel projection of the structure along **a** showing probable intermolecular H bridges. The corresponding distances are given, e.s.d. 0.02 Å. Symmetry operations are: (i) 1-x, -y, 1-z; (ii) x, 1+y, z; (iii) 1-x, -y, -z.

#### References

- ALVAREZ, S. & CANADELL, E. (1984). Solid State Commun. 50, 141–144.
- Вонм, М. С. (1983). Theor. Chim. Acta, 62, 373-396.
- ENDRES, H. (1980). Acta Cryst. B36, 57-60.
- ENDRES, H. (1982a). Acta Cryst. B38, 1601-1603.
- ENDRES, H. (1982b). Z. Naturforsch. Teil B, 37, 702-706.
- ENDRES, H. (1982c). Acta Cryst. B38, 1316-1317.
- ENDRES, H., BONGART, A., NÖTHE, D., HENNIG, I., SCHWEITZER, D., SCHÄFER, H., HELBERG, H. W. & FLANDROIS, S. (1985). Z. Naturforsch. Teil B. In the press.
- ENDRES, H., KELLER, H. J., LEHMANN, R., POVEDA, A., RUPP, H. H. & VAN DE SAND, H. (1977). Z. Naturforsch. Teil B, 32, 516-527.
- ENDRES, H. & SCHLICKSUPP, L. (1980). Acta Cryst. B36, 715-716.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- SHELDRICK, G. M. (1983). SHELXTL. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.
- STRUCSY (1984). Structure System Program Package. Stoe, Darmstadt, Federal Republic of Germany.

Acta Cryst. (1985). C41, 1049–1052

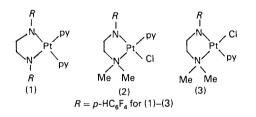
## Structure of an Organoamidoplatinum(II) Compound

## BY DAVID P. BUXTON, GLEN B. DEACON, BRYAN M. GATEHOUSE,\* IAN L. GRAYSON AND PHILLIP J. WRIGHT

Chemistry Department, Monash University, Clayton, Victoria 3168, Australia

(Received 19 December 1984; accepted 1 April 1985)

Abstract. Chloro[*N*,*N*-dimethyl-*N'*-(2,3,5,6-tetrafluorophenyl)-1,2-ethanediaminato(1–)]pyridineplatinum(II), [PtCl(C<sub>10</sub>H<sub>11</sub>F<sub>4</sub>N<sub>2</sub>)(C<sub>5</sub>H<sub>5</sub>N)],  $M_r = 544.85$ , triclinic,  $P\overline{1}$ , a = 12.296 (2), b = 13.014 (1), c = 5.679 (1) Å,  $\alpha = 91.88$  (2),  $\beta = 111.74$  (1),  $\gamma = 96.23$  (1)°, V = 836.5 Å<sup>3</sup>, Z = 2,  $D_m = 2.16$  (2),  $D_x = 2.16$  Mg m<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.7107 Å,  $\mu = 8.26$  mm<sup>-1</sup>, F(000) = 516, T = 293 K. Final R = 0.037 for 3798 counter reflections. The structure consists of molecules of the title compound in which approximately square-planar Pt<sup>II</sup> is


© 1985 International Union of Crystallography

<sup>\*</sup> Author for correspondence.

coordinated by chloride, pyridine and the bidentate N,N-dimethyl-N'-(2,3,5,6-tetrafluorophenyl)-1,2-ethanediaminate(1—) ligand. The Pt to ligand atom distances are: Pt-Cl 2.337 (2), Pt-N(NMe<sub>2</sub>) 2.074 (5), Pt-N(pyridine) 2.019 (5) and Pt-N(amido) 2.028 (5) Å.

**Introduction.** Whereas reaction of  $[PtCl_2L_2 [e.g. L_2 = 2,2'-bipyridyl or$ *trans* $-(pyridine)_2] complexes with thallous polyfluorobenzoates in boiling pyridine yield <math>[R_2PtL_2]$  (e.g.  $R = C_6F_5$  or p-HC<sub>6</sub>F<sub>4</sub>) or  $[RPtClL_2]$  organometallics (Deacon & Grayson, 1982), the complex  $[PtCl_2en]$  (en = 1,2-ethanediamine) does not give  $[(C_6F_5)_2Pten]$  or  $[C_6F_5PtCl(en)]$  with thallous pentafluorobenzoates in pyridine. Unexpectedly, an N-(2,3,5,6-tetrafluorophenyl) substituted 1,2-ethanediaminatoplatinum(II) complex (1) is obtained (Deacon, Gatehouse, Grayson & Nesbit, 1984):

$$PtCl_{2}en] + 2TlO_{2}CC_{6}F_{5} + 4py \rightarrow (1) + 2TlCl + 2CO_{2} + 2pyHF.$$



A similar reaction between  $[PtCl_2L_2]$   $(L_2 = N, N-dimethyl-1, 2-ethanediamine)$  and thallous pentafluorobenzoate yielded the title complex, which may have the structure (2) or (3):

$$[PtCl_{2}{(CH_{3})_{2}NCH_{2}CH_{2}NH_{2}}] + TlO_{2}CC_{6}F_{5} + 2py$$
  

$$\rightarrow (2) \text{ or } (3) + TlCl + CO_{2} + pyHF.$$

Since the isomer could not be identified spectroscopically, a crystal-structure determination was undertaken.

**Experimental.** Details of the preparation by reaction (1) will be given elsewhere. The compound was crystallized from a 1:3 (v/v) mixture of toluene/petroleum ether (b.p. 333-353 K) over 2 d at 243 K.  $D_m$  by flotation in CCl<sub>4</sub> and C<sub>2</sub>H<sub>2</sub>Br<sub>4</sub>.

Space group  $P\overline{1}$  by successful refinement; cell parameters determined with a Philips PW 1100 automatic four-circle diffractometer equipped with a graphite monochromator as described previously (Gatehouse & Miskin, 1974), and are the mean of five refinements of the 24 reflections used to monitor crystal stability during data collection. Three standard reflections measured at 3 h intervals. No decomposition occurred. Data collected using the  $\theta/2\theta$  scan technique with a symmetric scan width of  $\pm 1.20^{\circ}$  in  $\theta$  from the calculated Bragg angle, with an allowance for dispersion, at a scan rate of  $0.05^{\circ}$  s<sup>-1</sup>. No reflection was

sufficiently intense to warrant the insertion of an attenuation filter. Data processed using a program written specifically for the PW 1100 diffractometer (Hornstra & Stubbe, 1972). Valves of I and  $\sigma(I)$ corrected for Lorentz and polarization effects. Absorption correction applied, based on indexed crystal faces, max, and min, transmission factors 0.5847 and 0.3955 respectively. 4864 reflections measured to  $2\theta = 60^{\circ}$  from an approximately hexagonal prismatic crystal  $0.28 \times 0.075 \times 0.11$  mm, 3798 unique reflections  $[I > 3\sigma(I)]$  used in analysis; index range h - 17/15,  $k \pm 18$ , 10/7. Pt-atom parameters found from Patterson synthesis and all non-H atoms located in subsequent difference Fourier synthesis. Function minimized in full-matrix least-squares refinement  $\sum w(|F_o| - |F_c|)^2$ , where w is the weight  $\{[\sigma^2(F_o)]^{-1}\}$ . Pt and Cl atoms refined anisotropically, other non-H atoms refined isotropically (107 variable parameters), final R = 0.037 and wR = 0.036 (for observed reflections); max.  $\Delta/\sigma$  in final cycle 0.2; inclusion of H atoms not considered warranted. Final difference Fourier synthesis had  $\Delta \rho$  within -1.29 and  $1.21 \text{ e} \text{ Å}^{-3}$ . This was in the vicinity of the Pt atom. Scattering factors for neutral atoms and corrections for anomalous dispersion used (International Tables for X-ray Crystallography, 1974). All calculations performed on the Monash University VAX 11/780 computer system. Major programs used: SHELX76 (Sheldrick, 1976), ORFFE (Busing, Martin & Levy, 1964) and MEANPL (Blow, 1960). Figure drawn using ORTEP (Johnson, 1965).

**Discussion.** Final fractional coordinates and thermal parameters, interatomic distances and selected angles, and mean-plane data are given in Tables 1, 2 and 3.\*

The crystal structure (Fig. 1) shows coordination of chloride, pyridine, and a chelating N,N-dimethyl-N'-(2,3,5,6-tetrafluorophenyl)-1,2-ethanediaminate(1-) ligand to Pt in an approximately square-planar arrangement. Of the two possible isomers (2) and (3) (R = p-HC<sub>6</sub>F<sub>4</sub>), the former, with pyridine *cis* to the tetrafluorophenylamido group, is present.

The Pt-N(3)(amido) and Pt-N(1)(py) distances (Table 2) are essentially equal by contrast with the situation in  $[Pt{N(p-HC_6F_4)CH_2}_2(py)_2]$  where the Pt-N(amido) distance is significantly longer than Pt-N(py) (Deacon *et al.*, 1984). The marginally longer Pt-N(2)(NMe<sub>2</sub>) distance is as expected for a neutral N *trans* to an amine ligand {see *e.g.* Pt-N 2.05 Å in *trans*-[Pt(NH\_3)\_2Cl\_2] (Milburn & Truter, 1966)}. Comparison of the Pt-Cl distance with that (2.32 Å) of *cis*-[Pt(NH\_3)\_2Cl\_2] (Milburn & Truter, 1966) suggests that the *trans* influence of the diorganoamido ligand is

ſ

<sup>\*</sup> Lists of structure factors, full bond-angle data and Table 3 have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42142 (25 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

similar to that of an uncharged amine. A similar conclusion can be drawn from the similarity between the Pt-P distances of the *cis*-bis(*o*-aminophenyldiphenyl-phosphine)platinum(II) cation (Cooper, Downes, Goodwin & McPartlin, 1983) and of *cis*-bis(*o*-amidophenyldiphenylphosphine)platinum(II) (Cooper, Downes, Goodwin, McPartlin & Rosalky, 1983). The stereochemical arrangement at the amido N (Table 2) is

| Table 1. Fractional coordinates $(\times 10^4)$ and thermal   |  |  |  |  |
|---------------------------------------------------------------|--|--|--|--|
| parameters $(Å^2 \times 10^3)$ with e.s.d.'s in parentheses   |  |  |  |  |
| (Pt-atom coordinates and thermal parameters are $\times 10^5$ |  |  |  |  |
| and 10 <sup>4</sup> respectively)                             |  |  |  |  |

|       | x         | у         | z          | $U_{\rm iso}$ |
|-------|-----------|-----------|------------|---------------|
| Pt    | 32719 (2) | 18736 (2) | 3297 (5)   | +             |
| Cl    | 2780 (2)  | 155 (1)   | 1021 (4)   | ÷             |
| N(1)  | 1597 (5)  | 1804 (4)  | -2202 (10) | 34 (1)        |
| N(2)  | 4977 (5)  | 1955 (4)  | 3011 (10)  | 34 (1)        |
| N(3)  | 3785 (5)  | 3384 (4)  | 49 (11)    | 37 (1)        |
| F(1)  | 2518 (3)  | 3134 (3)  | -5156 (8)  | 45 (1)        |
| F(2)  | 993 (4)   | 4369 (3)  | -7610 (9)  | 57 (1)        |
| F(3)  | 1983 (5)  | 6518 (4)  | -121 (11)  | 72 (1)        |
| F(4)  | 3381 (4)  | 5220 (3)  | 2491 (9)   | 57 (1)        |
| C(1)  | 1266 (6)  | 1296 (5)  | -4507 (14) | 40 (2)        |
| C(2)  | 82 (7)    | 1154 (6)  | -6215 (16) | 50 (2)        |
| C(3)  | -750 (7)  | 1565 (6)  | -5481 (17) | 57 (2)        |
| C(4)  | -415 (7)  | 2076 (6)  | -3114 (17) | 58 (2)        |
| C(5)  | 783 (6)   | 2205 (5)  | -1527 (14) | 43 (2)        |
| C(6)  | 5629 (6)  | 1102 (5)  | 2642 (15)  | 45 (2)        |
| C(7)  | 4942 (6)  | 1909 (5)  | 5640 (15)  | 46 (2)        |
| C(8)  | 5636 (6)  | 2979 (5)  | 2793 (14)  | 40 (2)        |
| C(9)  | 4792 (6)  | 3789 (5)  | 2355 (14)  | 42 (2)        |
| C(10) | 3010 (5)  | 4076 (4)  | -1179 (12) | 30 (1)        |
| C(11) | 2348 (5)  | 3931 (5)  | -3817 (12) | 34 (1)        |
| C(12) | 1594 (6)  | 4592 (5)  | -5078 (14) | 42 (2)        |
| C(13) | 1433 (7)  | 5483 (5)  | -3960 (15) | 47 (2)        |
| C(14) | 2080 (6)  | 5649 (5)  | -1402 (15) | 45 (2)        |
| C(15) | 2834 (6)  | 4987 (5)  | -50 (14)   | 40 (2)        |

<sup>†</sup> Anisotropic thermal parameters of the type  $\exp[-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{12}hka^*b^* + \cdots)]$ 

|    | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ | $U_{13}$ | $U_{23}$ |
|----|----------|----------|----------|----------|----------|----------|
| Pt | 275 (1)  | 300 (1)  | 239 (1)  | -21 (1)  | 63 (1)   | 22(1)    |
| Cl | 52 (1)   | 35 (1)   | 54 (1)   | 6(1)     | 7 (1)    | 0 (1)    |

 Table 2. Interatomic distances (Å) and selected angles

 (°) with e.s.d.'s in parentheses

| Pt-Cl            | 2.337 (2)  | C(12)-C(13)         | 1.372 (11) |
|------------------|------------|---------------------|------------|
| Pt-N(1)          | 2.019 (5)  | C(13) - C(14)       | 1.370 (10) |
| Pt-N(2)          | 2.074 (5)  | C(14)-C(15)         | 1.371 (10) |
| Pt-N(3)          | 2.028 (5)  | C(15)-C(10)         | 1.405 (10) |
| C(1)–C(2)        | 1.406 (9)  | N(3)-C(9)           | 1.462 (8)  |
| C(2)–C(3)        | 1.388 (14) | C(9)C(8)            | 1.521 (10) |
| C(3)–C(4)        | 1.375 (13) | C(8)-N(2)           | 1.517 (9)  |
| C(4)C(5)         | 1.401 (10) | N(2)–C(6)           | 1.491 (10) |
| C(5) - N(1)      | 1.344 (11) | N(2)-C(7)           | 1.513 (11) |
| N(1)-C(1)        | 1.344 (9)  | C(11) - F(1)        | 1.345 (8)  |
| N(3)–C(10)       | 1.393 (8)  | C(12) - F(2)        | 1.356 (8)  |
| C(10)–C(11)      | 1.410 (8)  | C(14)-F(3)          | 1.365 (10) |
| C(11)–C(12)      | 1.355 (9)  | C(15)-F(4)          | 1.355 (8)  |
| N(1)-Pt-Cl       | 87.0 (2)   | Pt-N(3)-C(10)       | 123.9 (4)  |
| N(2)-Pt-Cl       | 92.9 (2)   | C(10) - N(3) - C(9) | 117.2 (5)  |
| N(2) - Pt - N(3) | 83.1 (2)   | C(9) - N(3) - Pt    | 109.6 (4)  |
| N(3) - Pt - N(1) | 97.0 (2)   | C(8)-N(2)-Pt        | 106-9 (4)  |
|                  |            |                     |            |

Torsion angle

N(2)-C(8)-C(9)-N(3) -57.6 (8)°

substantially distorted from tetrahedral towards triangular, suggesting at least partial delocalization of the (non-coordinating) lone pair on N into the aromatic ring. This is borne out by the shortening of N(3)–C(10) (Table 2) from that [see *e.g.* N(3)–C(9), N(2)–C(8)] expected for an N–C single bond, and by the mean-plane data. This delocalization of charge into the aromatic ring can be partly attributed to the electronwithdrawing character of the F substituents, and may account for the fact that the amido N, though formally charged, is not a markedly better donor than the uncharged N-atom donors. A similar, even more pronounced, effect is observed for [Pt{N(*p*-HC<sub>6</sub>F<sub>4</sub>)CH<sub>2</sub>}<sub>2</sub>(py)<sub>2</sub>] (Deacon *et al.*, 1984).

In the present compound, coordination of the amido group is supported by coordination of the  $-NMe_2$ group. Diphenylphosphino groups (Cooper, Downes, Goodwin, McPartlin & Rosalky, 1983) and alkene groups (Cooper, Stevens & McPartlin, 1983) have also been used to support amido coordination. The tetrafluorophenyl group may confer stability to the Pt-N(3)(amido) bond against hydrolysis. Delocalization of the N lone pairs into the aromatic ring would inhibit hydrolytic protolysis at N(3). By contrast, [Pt(NHCH<sub>2</sub>)<sub>2</sub>bpy] (bpy = 2,2'-bipyridyl) is highly moisture sensitive (Watt & Upchurch, 1968). The delocalization and the stereochemical arrangement at N(3) could promote  $\pi$ -bonding between Pt and the amido N.

This work was carried out during the tenure of a grant from the Anti-Cancer Council of Victoria. This support, that of the Australian Research Scheme, and a loan of Pt from Johnson–Matthey are gratefully acknowledged.

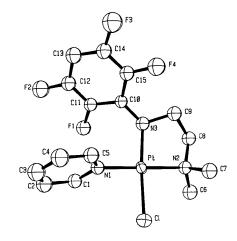



Fig. 1. Drawing of  $[PtCl{(p-HC_6F_4)NCH_2CH_2N(CH_3)_2}(C_5H_5N)]$ showing the stereochemistry of the molecule and the numbering scheme used.

### References

BLOW, D. M. (1960). Acta Cryst. 13, 168.

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
- COOPER, M. K., DOWNES, J. M., GOODWIN, H. J. & MCPARTLIN, M. (1983). Inorg. Chim. Acta, 76, L157–L158.
- COOPER, M. K., DOWNES, J. M., GOODWIN, H. J., MCPARTLIN, M. & ROSALKY, J. M. (1983). *Inorg. Chim. Acta*, **76**, L155–L156.
- COOPER, M. K., STEVENS, P. V. & MCPARTLIN, M. (1983). J. Chem. Soc. Dalton Trans. pp. 553-557.
- DEACON, G. B., GATEHOUSE, B. M., GRAYSON, I. L. & NESBIT, M. C. (1984). *Polyhedron*, **3**, 753–755.
- DEACON, G. B. & GRAYSON, I. L. (1982). Transition Met. Chem. 7, 97–104.

- GATEHOUSE, B. M. & MISKIN, B. K. (1974). Acta Cryst. B30, 1311–1317.
- HORNSTRA, J. & STUBBE, B. (1972). PW1100 Data-Processing Program. Philips Research Laboratories, Eindhoven, The Netherlands.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- MILBURN, G. H. W. & TRUTER, M. R. (1966). J. Chem. Soc. A, pp. 1609-1616.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- WATT, G. W. & UPCHURCH, D. G. (1968). J. Am. Chem. Soc. 90, 914-917.

highly active antibacterial agents. These compounds

cause a preferential and reversible inhibition of DNA

synthesis by inhibiting DNA gyrase (Sugino, Peebles,

Kreuzer & Cozzarelli, 1977; Gellert, Mizuuchi, O'Dea,

Itoh & Tomizawa, 1977). The crystal structure of

nalidixic acid was determined by Achari & Neidle (1976)

from photographic data and refined subsequently from more precise diffractometric data (Huber, Sake

Gowda & Acharya, 1980). The crystal structure of

5-aminooxolinic acid (3), which shows some anti-

bacterial activity as well, has also been investigated

(Czugler, Argay, Frank, Mészáros, Kutschabsky &

Reck, 1976). It is of some interest to compare the

structure of oxolinic acid with these, and with the

molecular structures of some other closely related

antibacterial agents for which no X-ray data are yet

Acta Cryst. (1985). C41, 1052–1055

# Structure of Oxolinic Acid, a Potent Antibacterial Agent. 1-Ethyl-1,4-dihydro-6,7-methylenedioxy-4-oxo-3-quinolinecarboxylic Acid, C<sub>13</sub>H<sub>11</sub>NO<sub>5</sub>\*

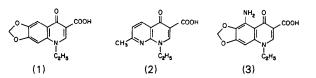
### BY M. CYGLER

Department of Crystallography, Institute of Chemistry, University of Łódź, Novotki 18, Łódź 91416, Poland

### AND C. P. HUBER<sup>†</sup>

Division of Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6

(Received 8 November 1984; accepted 19 December 1984)


available.

Abstract.  $M_r = 261 \cdot 2$ , monoclinic,  $P2_1/c$ , a =7.182 (2), b = 10.575 (2), c = 14.758 (2) Å,  $\beta =$  $V = 1117 \cdot 8 \text{ Å}^3$ ,  $94.26(1)^{\circ}$ , Z = 4, $D_r =$  $1.552 \text{ Mg m}^{-3}$ , Cu Ka,  $\lambda = 1.5418 \text{ Å}$ ,  $\mu = 0.98 \text{ mm}^{-1}$ , F(000) = 544, T = 294 K, final R = 0.038 for 1565 observed reflections. The molecule is planar within +0.12 Å except for the terminal carbon atom of the *N*-ethyl group, which is displaced 1.36 Å from the mean plane. There is considerable double-bond localization in the benzene-ring moiety, and a significant difference between the two N-C bond lengths in the pyridine ring, the bond adjacent to the benzene ring being longer by 0.058 (2) Å. The crystal structure features a bifurcated hydrogen bond with a strong intramolecular component from the carboxylic acid group to the neighbouring carbonyl oxygen and a weak intermolecular component from the same donor to O(9)in the dioxole ring.

**Introduction.** Oxolinic acid (1) and the less potent but closely related nalidixic acid (2) belong to a group of

<sup>†</sup> Author to whom correspondence should be addressed.

0108-2701/85/071052-04\$01.50



© 1985 International Union of Crystallography

<sup>\*</sup> Issued as NRCC No. 24238.